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RADIATION STRUCTURE OF THE RELAXATION ZONE
OF A SHOCK WAVE IN TWO-PHASE RAREFIED MEDIA

N, M, Kuznetsov, V, M, Popov, UDC 533.6.011,72
and Yu., V, Khodyko

Methods are presented for calculating the radiation structure of a shock front in a two-phase
medium with low density and an example of such a calculation is given,

The problem of the role of radiation in gasdynamics of high-temperature two-phase media is always
encountered when the radiation energy flux becomes comparable or excecds the gasdynamic flux, Thus, if the
equilibrium temperature behind the shock front propagating in such media is ~10° K, then radiation
has a large effect on the structure of the front with densities in front of the wave less than 10™? kg/m3,

The investigation of the radiation structure of the front of a shock wave in gas in the diffusion approxima-

tion involves an analysis of the properties of the transfer equation at e and joining the functions sought at the
density jump [1, 2], In this case, when radiation transfer occurs in a background of other relaxation processes,
the analysis of the properties at +w and the numerical solution of the problem as a whole, as noted in [3] and as
will be evident in what follows, involve serious difficulties.

The radiation structure of a shock wave in a gas with particles was investigated previously in [4], wherein
the interaction of retardation processes, heat exchange with the gas, and radiation of particles without taking
into account their effect on the gas flow was determined, In this paper, the processes indicated are examined
in a higher-order approximation and, in addition, their interaction with the gasdynamics is determined and two
methods are proposed for calculating the radiation structure of the shock wave,

In what follows, we investigate the stationary structure of a shock front in a mixture of a gas and micro-
scopic particles, It is assumed that all particles are spherical and have the same radius, and the gas and the
particles are characterized by different temperatures and mass velocities, Phase transformations of the par-
ticles are not examined, The gas is assumed to be nonradiating and does not react with the particles, and it
is also assumed to be nonviscous and nonthermally conducting, The effects of viscosity and thermal conductiv-
ity are taken into account only in the interaction between the gas and the particles.

The structure of the shock front is characterized by two regions of flow, separated by a density jump. In
the region behind the density jump, the particles on interacting with the gas exchange heat and mechaniecal
energy, and also loose or acquire energy through radiation, These processes, interacting with one another,
determine the structure of the shock front in a given region, The radiation, leaving the surface of the dis~
continuity, is absorbed in front of the discontinuity by particles, which are thereby heated, In their turn, the
particles heat the gas in front of the discontinuity, creating a pressure gradient in it, which puts the gas, and
then the particles, into motion, At low density of the two-phase medium, the radiation can greatly change the
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temperature and velocity of particles as well as the value of gasdynamic parameters before their shock
compression,

We will examine a one-dimensional stationary two-phase flow in a system of coordinates fixed to the
density discontinuity, We orient the x axis along the flow, Taking intc account the basic assumptions of the two-
velocity and two-temperature model of two-phase flow, the laws of conservation of mass, momentum, and
energy in the radiating medium and the equation of state of the gas have the form [1, 5, 6];

pv = M, ppup = My, pUP pp02 + p =2,

2 2
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p = ApT.
The equation of motion of the particle and the equation determining the change in its temperature have
the form

4 s duy, F
p]'nvp Ve =4
T, - Q 1 dS
= i —
dx __3__ R3mecmvp MpCm dx

Since in what follows we examine particles whose radius does not exceed the mean free path in a gas, in order
to determine ¥ and Q we will make use of the results of rarefied-gasdynamics [7, 8]:
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is the probability integral;
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is the modified Stanton number;
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is the stagnation temperature;

b erf(?)
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is the modified stagnation coefficient,

In what follows, we assume that the absorption coefficient of the particles does not depend on frequency
(grey body approximation), We will write the transfer equation for the radiation flux S and density U in the
diffusion approximation:

—d—S-~=c:»c[B(x)—-U], SO S. (3)
dx dx c
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Here ¥ is the coefficient of absorption of the particles, equal to the product of the number of particles per
unit volume np by their cross section 7 R? and the emissivity 6,

36
w = eflpJ'CRz: W Pps

BX) = 40"1“%)/ ¢ is the source function in the transfer equation,

The system of equations (1)-(3) is valid on both sides of the density discontinuity, On the discontinuity
itself, there are no sources and sinks, so that all variables S, U, Tps and Vp in the system (2)-(3) at x = 0 are
continuous. At +%, they take their equilibrium values and are determined by the value of the four parameters.
For these parameters, we choose the particle and gas density at —« and the temperature of the mixture at =<,
Denoting the quantity relating to the region in front of the density discontinuity by the index 1, we write the
boundary conditions for the system of differential equations at == and the continuity equation at the density
discontinuity as follows:

4a)
T4, (
S, =0, U1:—45‘.c;, T Ty Upy = Oy X = — 00,
Si’_——“S, UizU, Tpisz’ Up1:vp1 x:(), (4b)
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In the region in front of the density discontinuity, the point x = —% is a singular point of the system (1)-
{3). It can be shown, e.,g., that in the SU plane of the multidimensional space S, U, Tp, and Vp, this point is a
saddle point, while one of the separatrices is the solution sought, In order to determine the equation of the
separatrix, we will linearize the system of differential equations, expanding it near the singular point with
respect to small deviations in the variables from their equilibrium values, i.e., according to S, AU=U—U_x,
ATp=Tp—T -, and Avp=vp—v_» . This leads to a system of linear homogeneous differential equations with
constant coefficients for S,AU, AT,, Avy . Solving it using Euler's method, we set

S =", AU= y,eM, AT, = M, Avp = y,eh*,

The characteristic equation of the system, a fourth-degree algebraic equation, has (as can be shown) a single
positive and three negative roots. In order to satisfy the boundary conditions at —, the arbitrary constants in
front of the exponentials with negative roots must be set equal to zero. Denoting the positive root as A, and the
arbitrary constant associated with it by C,, we write the particular solution of the system (1)-(3) in the linear
approximation in the form:

S = Cieh*, AU=B,Cié™* = B,S, ATp = B,Cié™ = B,S, 5)

Avy = B,Cie™* = B,S,

where A=%y; ¥<<0; Pv, Br,  and B, are expressed in terms of the coefficients of the linearized system, Rela-
tions (5) permit integrating the starting nonlinear system (1)-(3) numerically, Given some small value of the
flux 8, it is possible to obtain from (5) the values of the remaining variables corresponding to it, with the
exception of the variable x, Its uncertainty is a result of the uncertainty in the position of the front, which can
be eliminated with the help of the continuity conditions for the solution on each side of the density jump, strict-
ly tied to the reference system for x. The integration was continued using the usual Runge—Kutta scheme until
the value of U became so large that the solution obtained obviously encompasses the entire region in front

of the density jump, (In the problem examined, U in front of the jump does not exceed Uypcw}.

In the region behind the density jump, the use of the boundary conditions, obtained from the conditions at
+= using the scheme presented above, does not give desirable results, The point is that in this region the char-
acteristic equation of the linearized system (1)-(3) has, as also in the region in front of the density jump, three
negative and a single positive root, so that in the region examined (where x = 0), from conditions (4c), it is
possible to determine only a single arbitrary constant. If further boundary conditions found are used for obtain-
ing the solution sought, satisfying conditions (4b), then in accordance with the number of undetermined arbitrary
constants in the region behind the shock front it will be necessary, in carrying out the numerical integration,
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to construct an infinity of solutions in a cube,

The qualitative difference in the solutions in front of the density jump and behind it is related to the fact
that in the region in front of the jump all processes are determined by absorption of radiation transferred out
of the region x = 0. In order to determine the flux and density of radiation in this region, besides the con~
ditions at —e for S and U, it is necessary to fix one of these quantities on the density jump. The conditions
indicated, together with the rates of the corresponding processes, completely determine the value of the tem-
perature and velocity of particles in the entire region examined, The presence of a single undetermined con-
stant in (5) is related to this circumstance, In order to integrate the system of differential equations (1)-(3)
in the region behind the density jump, on the jump itself it is necessary to fix in addition to S or U the tem-
perature and velocity of the particles. In this region, heat-exchange processes and the resistance of par-
ticles are relatively independent., Although they depend on the transfer of energy by radiation, but are not
determined only by such transfer, as in the region in front ofthe density jump, they can occur inthe absence of
radiation, The presence of three undetermined constants in the solution of the system (1)-(3), obtained in the
linear approximation, is related to the necessity of giving the three quantities on the density jump as boundary
conditions,

The boundary conditions on the density jump can be obtained with the help of the continuity conditions
(4b) from the solutions of the system (1)-(3) relating to the region before and after the density jump. In its
turn, the solution behind the density jump is determined by the boundary conditions on the jump. In order to
avoid the difficulties indicated, we will transform from the system of differential equations (3) to a system of
integral equations, We introduce a new independent variable ¢ with the help of equation d¢ = V3rdx and bound-
ary conditions £ = 0 at x = 0, The transformed equations (3) form a system of linear inhomogeneous differ-
ential equations, Solving this system using the method of variation of an arbitrary constant and eliminating one
of two integration constants with the help of the conditions (4c), we obtain the following system

g oo
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In the region behind the density jump, the system of integrodifferential equations (1}, (2), and (3a) is solved by
iteration, In the zeroth-order approximation, it is assumed that there is no radiation, The boundary conditions
for heat exchange processes and retardation of particles are the velocity and temperature of the particles
corresponding to some value of the coordinate of the solution of the system (1)-{3) in the region in front of the
density jump, First, the system (1)-(2) is integrated together with the equations d¢ = vV3ndx and the zeroth-
order approximation for S and U, for chosen boundary conditions for the variables T, and vp and with the con-
dition £ = 0 at x =.0, According to the functions Tp(x) and v,(x), we calculate successively the integrals in the
system (3a), the arbitrary constant C, with the help of the conditions (4b), the solution in front of the density
jump, and the value of the radiation flux S(x) and density U(x) in the first approximation, Then, the cycle de-
scribed above is repeated with the same boundary conditions, using now not the zeroth but the first, second,
etc. order approximations for S and U to obtain S(0) and U(0) to given accuracy, Then, the temperature T, (0)
and particle velocity v_(0) are determined from the solution obtained in the region in front of the density jump
according to the corresponding values of S(0) and U(0). Together with the functions S(x) and U(x) obtained in
the last iteration in the preceding cycle they form the initial data for the new cycle, The calculation is ter-
minated after the required accuracy is obtained for Tj, and v, Asa result, the solution S(x), U(x), Tp(x),

and vp(x) is obtained for regions behind and in front of the density jump, satisfying all conditions (4).

The algorithm for solving the system of equations (1), (2), and (3a) described above differs somewhat from
a similar algorithm described in [3] and extends, in comparison to [3], the region of convergence of the iter-
ations to small flux densities, Up to flux densities at —« not lower than 10~ kg/m3, the convergence of the
iterations is good: an accuracy of 0,1% is attained with not more than 10 iterations, As the flux density de-
creases and the role of radiation correspondingly increases, the convergence of the process indicated worsens.
When the structure of the shock front behind the density jump is determined mainly by radiation transfer, the
iteration process no longer converges,
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Fig, 1, Qualitative behavior of the solutions
of the system (1)-(3) in the SU plane (S =0,

U = Uw is the saddle point singularity; S(0),
U(0) are the values of S and U on the density
jump): 1) the solution for which the boundary
coincides with the density jump; 2 and 3) are
located, respectively, in front of andbehindthe

jump.
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The system of differential equations (1)-(3) can be integrated in the region behind the density jump with
the help of unother method, which is also effective for low gas densities. The gist of the method is as follows,
In the solution of the system (1)-(3) obtained for the region in front of the density jump with the position of the
jump remaining undetermined, some point is chosen with radiation density UOC = (U% + U‘b)/z, where U& is the
maximum value of U up to which the integration was carried out; UY is the value of U known to correspond to
some point in front of the density jump sought (U}, = 46T w/c can be taken as this point). The quantity _U(% and
the corresponding value of the remaining variables of the solution obtained are used as boundary conditions in
integrating the system (1)-(3) behind the density jump, The position of U‘é relative to the density jump sought
is determined by the behavior of the integral curves in the neighborhood of the singular point x = +%, It is
assumed that the singular point of the system of differential equations (1)-(3) in the SU plane is a saddle point,
(The existence of a saddle point singularity for the system (3) with Tp = T is proved rigorously in [2].) The
nature of the behavior of the solution of (1)-(3) sought, which must coincide with the separatrix as well as other
integral curves in the vicinity of the saddle point singularity, is shown in Fig, 1. Curve 1 represents the case
when the boundary coincides with the value of the variables on the density jump, while curves 2 and 3 corre-
spond to the case when they are located, respectively, in front of and behind density jump, By comparing the
solution obtained with curves 1-3, it is easy to determine the direction in which U%; must be displaced in order
to approach the integral curve sought, Solving this problem by iteration, it is sufficient, .8, to set UL =
(U™ + Ui'y2, where for curve 2 Uy — U, Uh = U5, Ui = U 3 for curve 3, Uy = U5, Ub=U5", and

Uit = Ur', where i is the number of the iteration, It is easy to see that the density jump is always located
within the segment [UZ, U;)], whose length from iteration to iteration decreases by a factor of 2. The number
of iterations for given accuracy is determined by the convergence of the process of halving the segments and
the initial length of [U%, U], Calculations using this method showed that for gas densities of interest for the
given problem the values of the variables sought on the density jump and the entire structure of the shock front
are determined to within 1% within ~10 iterations, The equilibrium values at the point X = 4w are achieved in
this case by all variables with much higher accuracy, The latter circumstance served as a criterion for the
correctness of the calculation of the structure of the shock front and an indirect proof of the fact that the point
X = 4o is a saddle point singularity of the system of differential equations (1)-(3) in the SU plane,
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The procedure described above can be realized when the mean free path of the radiation exceeds the
characteristic length of the other nonequilibrium processes (which, as a rule, is observed in this problem) or
when the gas density is low, while radiation does not play a large role, Otherwise, the radiation attains a
state of local thermodynamic equilibrium sooner than the other relaxation processes are completed, Then,
for boundary conditions given imprecisely on the density jump, the integral curves of the radiation flux and
density will be above or below local equilibrium, In this case, in determining UL,, the computational procedure
must first ensure that S and U attain locally equilibrium values and then equilibrium values,

Figure 2 shows an example of the structure of a shock front in a mixture of neon and soot particles, cor-
responding to the following parameters of the problem: p = 1,34+1072 kg/m? pp =1 3473 kg/m?; T = 273°K at
X=—%; T=3000°Kat.x =+0; R=5+ 10-" m, In the calculations, it was assumed that Og = 0y = Qg =0,9;
0=1; Cm =17,68+10* J/kg+deg, As is evident from Fig, 2, radiation absorbed in front of. the density jump
heats the particles and gas to a very high temperature and changes the veloeity of the particles and that of
the gas, Due to the continuous increase in T, and p,, on the density jump, the particles absorb more radia~
tion than they emit, not only for x < 0, but also in some neighborhood x = 0, For this reason, the point of maxi-
mum radiation flux does not coincide with the density jump. The structure behind the density jump is deter-
mined by the interaction of all nonequilibrium processes. Immediately behind the jump, the determining
process is the process of conversion of the kinetic energy of particles into heat energy in the mixture, This
explains the increase in the gas temperature behind the density jump,

NOTATION

A, Cp, and C,y,, respectively, gas constant, the heat capacity of the gas and of the particle material
computed per unit mass; B(x), source function in the transfer equation; c, velocity of light; C,, and C,, arbitrary
constants; F, force acting on particle in the gas flow; M, M,,, P, and E, constants that characterize the state
of the gas in front of the shock wave, the intensity of the shock wave, the fraction of particles and gas in the
mixture; 0 number of particles per unit volume; p, gas pressure; Q, amount of heat absorbed per unit time
by a particle moving in the gas; r, modified stagnation coefficient; R, particle radius; S, integral radiation
flux; St, Stanton number; t, integration variable; T and Tp, gas and particle temperatures; T,., stagnation tem-
perature; U, integral radiation density; v and Vp, €38 and particle velocities; V = v — ~Vp I; x, distance mea-
sured from the density jump; z=V/VZAT; Qg iy, and a., accommodation coefficients, characterlzmg the frac-
tion of the energy and of the normal and tangential components of the momentum transmitted to the gas atoms
in collisions with a solid surface, respectively; Bys Bs and Bys constant coefficients in the linearized system
(1)-(3); v, ratio of specific heat capacities of the gas; vy, V3, V3» ¥4 and A, constants; 8, emissivity; n, coef-
ficient of absorption; A, positive root of the characteristic equation; £, dimensionless independent variable
of the system (1)-(3); p, Pps and pm, gasdensity, particle density, and density of the particle material;

o, Stefan — Boltzmann constant. The indices are as follows: A, D, and C, respectively, edge and mid-
points of a segment; i, number of the iteration; —e, equilibrium value of the variables in front of the shock
front; +%, equilibrium value of the variables behind the shock front,
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