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RADIATION STRUCTURE OF THE RELAXATION ZONE 

OF A SHOCK WAVE IN TWO-PHASE RAREFIED MEDIA 

N. M. Kuznetsov, V. M. Pop.v, 
and Yu. V. Khodyko 

UDC 533.6.011.72 

Methods are  presented for calculating the radiat ion s t ruc ture  of a shock front in a two-phase 
medium with low density and an example of such a calculation is given. 

The problem of the role of radiation in gasdynamics of high-temperature two-phase media is always 
encountered when the radiation energy flux becomes comparable or exceeds the gasdynamic flux. Thus, if the 
equilibrium temperature behind the shock front propagating in such media is ~i03 K, then radiation 
has a large effect on the structure of the front with densities in front of the wave less than 10 -2 kg/m 3. 
The investigation of the radiation structure of the front of a shock wave in gas in the diffusion approxima- 

tion involves an analysis of the properties of the transfer equation at • and joining the functions sought at the 
density jump [i, 2]. In this case, when radiation transfer occurs in a backg~round of other relaxation processes, 
the analysis of the properties at • and the numerical solution of the problem as a whole, as noted in [3] and as 
will be evident in what follows, involve serious difficulties. 

The radiation structure of a shock wave in a gas with particles was investigated previously in [4], wherein 
the interaction of retardation processes, heat exchange with the gas, and radiation of particles without taking 
into account their effect on the gas flow was determined. In this paper, the processes indicated are examined 
in a higher-order approximation and, in addition, their interaction with the gasdynamics is determined and two 
methods are proposed for calculating the radiation structure of the shock wave. 

In what follows, we investigate the stationary structure of a shock front in a mixture of a gas and micro- 
scopic particles. It is assumed that all particles are spherical and have the same radius, and the gas and the 
particles are characterized by different temperatures and mass velocities. Phase transformations of the par- 
ticles are not examined. The gas is assumed to be nonradiating and does not react with the particles, and it 
is also assumed to be nonviscous and nonthermally conducting. The effects of viscosity and thermal conductiv- 
ity are taken into account only in the interaction between the gas and the particles. 

The structure of the shock front is characterized by two regions of flow, separated by a density jump. In 
the region behind the density jump, the particles on interacting with the gas exchange heat and mechanical 
energy, and also loose or acquire energy through radiation. These processes, interacting with one another, 
determine the structure of the shock front in a given region. The radiation, leaving the surface of the dis- 
continuity, is absorbed in front of the discontinuity by particles, which are thereby heated. In their turn, the 
particles heat the gas in front of the discontinuity, creating a pressure gradient in it, which puts the gas, and 
then the particles, into motion. At low density of the two-phase medium, the radiation can greatly change the 
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tempera ture  and velocity of part icles  as well as the value of gasdynamic parameters  before their  shock 
compre ssion. 

We will examine a one-dimensional  stat ionary two-phase flow in a sys tem of coordinates fixed to the 
density discontinuity. We orient the x axis along the flow. Taking into account the basic assumptions of the two- 
velocity and two-temperature  model of two-phase flow, the laws of conservation of mass ,  momentum, and 
energy in the radiat ing medium and the equation of state of the gas have the form [1, 5, 6]: 

pv M, p~vp=A4p Or2+ 2 = , ppVp'@p = ~ ,  

p = ApT. 
The equation of motion of the part iele and the equation determining the change in its tempera ture  have 

the form 

4 ~ d v  v 
3 RSPmVp dx = F, 

dTp _ Q 1 dS 

dx 4 n R3PmCm vp MpCm dx 
3 

(2) 

Since in what follows we examine par t ic les  whose radius does not exceed the mean free path in a gas, in order  
to determine F and Q we will make use of the resu l t s  of ra ref ied-gasdynamics  [7, 8]: 

F = nRzoV tv - -  vp) ! (2 - -  c,~ + a~) )< 
2 [ 2 z 3 

• [ 4z~+4z~'-12z err(z)+. 2z2+lv-~- exp(--z2)i+_ 2a~3z / @ } '  

Q=4~R2oVAae(T~- -Tv )  ? + 1  St. 
~ - - I  

Here, 

is the probability integral;  

err (z) = ]/-~-- exp (--  t 2) at 

o 

St-- 8z2 [ l  z exp (--  + @2+ _~_) err(z) ] 

is the modified Stanton number; 

T ~ =  T[1 +z~r (v  - 1)/(V+ 1)l 

is the stagnation temperature;  

1 err (z) 
r = 2 + z; . . . .  -Sz~S t 

is the modified stagnation coefficient. 

In what follows, we assume that the absorption coefficient of the part icles does not depend on frequency 
(grey body approximation). We will write the t ransfer  equation for the radiation flux S and density U in the 
diffusion approximation: 

dS dU 3 u 
- c~ [B (x) - -  U] ,  S .  

dx dx c 

(a) 
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Here ~ is the coefficient of absorption of the par t ic les ,  equal to the product  of the number of par t ic les  per  
unit volume np by their  c ross  section 7r R 2 and the emiss iv i ty  O, 

3O 
x=gnp~R 2 = ~  Pp; 

4 Rp 

B(x) = 4Cr~p/C is the source function in the t ransfer  equation. 

The sys tem of equations (1)-(3) is valid on both sides of the density discontinuity. On the discontinuity 
itself, there  are  no sources  and sinks, so that all var iables  S, U, Tp, and Vp in the sys tem (2)-(3) at x = 0 are  
continuous. At • they take their  equilibrium values and are  determined by the value of the four pa rame te r s .  
For  these pa rame te r s ,  we choose the par t ic le  and gas density at -~o and the tempera ture  of the mixture at •162 
Denoting the quantity re la t ing to the region in front of the density discontinuity by the index 1, we write the 
boundary conditions for the sys tem of differential equations at • ~o and the continuity equation at the density 
discontinuity as follows: 

4 oT4~ 
S i = O ,  U i -  , T p l =  T _ ~ ,  Vpi = v _ ~ ,  x = - -  co, 

c 

S i = S '  U i = U ,  T p ~ = T p ,  v p l = v v ,  x = O ,  

4 . r ;  
S = O ,  U =  c , T p = T ~ ,  v ; = v ~ ,  x = - F c o .  

(4a) 

(4b) 

(4c) 

In the region in front of the density discontinuity, the point x = - ~  is a singular point of the sys tem (1)- 
(3). It can be shown, e.g., that in the SU plane of the mult idimensional  space S, U, Tp, and Vp, this point is a 
saddle point, while one of the separa t r iees  is the solution sought. In order  to determine the equation of the 
separat r ix ,  we will l inear ize  the sys tem of differential equations, expanding it near the singular point with 
r e spec t  to small  deviations in the var iables  f rom their equilibrium values, i.e., according to S, A U =  U--U_~o, 

A Y p = r p - - T _ ~ ,  and Avp=vp--v_oo . This leads to a sys tem of l inear homogeneous differential equations with 
constant coefficients for S,AU, ATp, Av;  . Solving it using Eu le r ' s  method, we set 

S = "he xx, A U =  ~he~:q ATp = ya~x, AVp ~ y~e ~x. 

The charac te r i s t i c  equation of the system,  a four th-degree  algebraic equation, has (as can be shown) a single 
positive and three negative roots .  In o rder  to satisfy the boundary conditions at -~o, the a r b i t r a r y  constants in 
front of the exponentials with negative roots  must  be set equal to zero .  Denoting the positive root  as X+, and the 
a rb i t r a ry  constant associa ted with it by Ct, we write the par t icular  solution of the sys tem (1)-(3) in the l inear 
approximation in the form: 

S = Cle ~'~, AU--  ~uC~e ~x = [3uS , ATp = ~rCie~ ---- 13TS, (5) 

Avv = ~Cie ~ = [t~S, 

where )~--s247 x~<0; ~v, ~r, and/?V are  expressed  in t e rms  of the coefficients of the l inear ized system. _Rela- 
t i ons  (5) permit  integrating the s tar t ing nonlinear sys tem (1)-(3) numerica l Iy .  Given some small  value of the 
flux S, it is possible to obtain from (5) the values of the remaining  var iables  corresponding to it, with the 
exception of the var iable  x. Its uncertainty is a resu l t  of the uncertainty in the position of the front, which can 
be eliminated with the help of the continuity conditions for the solution on each side of the density jump, s t r i c t -  
ly tied to the r e fe rence  sys tem for x. The integration was continued using the usual Runge-Kut ta  scheme until 
the value of U became so large that the solution obtained obviously encompasses  the entire region in front 
of the density jump. (In the problem examined, U in front of the jump does not exceed U+oo). 

In the region behind the density jump, the use of the boundary conditions, obtained f rom the conditions at 
+~o using the scheme presented above, does not give desi rable  resu l t s .  The point is that in this region the cha r -  
ae te r i s t ic  equation of the l inearized sys tem (1)-(3) has, as  also in the region in front of the density jump, three 
negative and a single positive root,  so that in the region examined (where x _> 0), f rom conditions (4c), it is 
possible to determine only a single a rb i t r a ry  constant.  If fur ther  boundary conditions found are  used for obtain- 
ing the solution sought, satisfying conditions (4b), then in accordance  with the number of undetermined a rb i t r a ry  
constants  in the region behind the shock front it will be necessa ry ,  in ca r ry ing  out the numerica l  integration, 
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to cons t ruc t  an infinity of solutions in a cube. 

The quali tat ive di f ference in the solutions in front of the densi ty jump and behind it is r e l a t ed  to the fact 
that  in the reg ion  in front  of the jump all  p r o c e s s e s  a r e  de te rmined  by absorpt ion  of radia t ion  t r a n s f e r r e d  out 
of the region x _> 0. In o rde r  to de te rmine  the flux and densi ty of radia t ion in this region,  bes ides  the con-  
ditions at -~o for  S and U, it  is n e c e s s a r y  to fix one of these  quanti t ies on the density jump. The conditions 
indicated,  together  with the r a t e s  of the cor responding  p r o c e s s e s ,  comple te ly  de te rmine  the value of the t e m -  
pe r a tu r e  and veloci ty  of pa r t i c l e s  in the en t i re  reg ion  examined.  The p r e s e n c e  of a single undetermined con-  
stant  in (5) is  r e l a t ed  to this c i r cums tance .  In o rde r  to in tegra te  the s y s t e m  of different ial  equations (1)-(3) 
in the region behind the density jump, on the jump i tse l f  it is n e c e s s a r y  to fix in addition to S or  U the t e m -  
pe ra tu re  and veloci ty  of the pa r t i c l e s .  In this  region,  hea t -exchange  p r o c e s s e s  and the r e s i s t a n c e  of p a r -  
t i d e s  a re  r e l a t ive ly  independent. Although they depend on the t r a n s f e r  of energy by radia t ion,  but a re  not 
de te rmined  only by such t r a n s f e r ,  as  in the region in front  o f the  densi ty jump,  they can occur  in the  absence  of 
radia t ion.  The p re sence  of th ree  undetermined constants  in the solution of the s y s t e m  (1)-(3), obtained in the 
l inear  approximat ion ,  is r e l a t ed  to the necess i ty  of giving the th ree  quanti t ies on the density jump as boundary 
conditions.  

The boundary conditions on the densi ty  jump can be obtained with the help of the continuity conditions 
(4b) f rom the solutions of the s y s t e m  (1)-(3) re la t ing  to the region before  and af ter  the density jump. In i ts  
turn,  the solution behind the densi ty jump is de te rmined  by the boundary conditions on the jump.  In o rde r  to 
avoid the diff icult ies indicated, we will t r a n s f o r m  f rom the s y s t e m  of di f ferent ia l  equations (3) to a s y s t e m  of 
in tegra l  equat ions.  We introduce a new independent va r i ab le  } with the help of equation d} = v ~ d x  and bound- 
a ry  conditions } = 0 at  x = 0. The t r a n s f o r m e d  equations (3) fo rm a sy s t em of l inear  inhomogeneous d i f fe r -  
ential  equations.  Solving this sys t em using the method of va r i a t ion  of an a r b i t r a r y  constant and el iminat ing one 
of two integrat ion constants  with the help of the conditions (4c), we obtain the following sy s t em 

(~-- B (t) 1 i } C I, ,I - T  . , S -- ]/73_ C.~ exp (--  ~) + - ~ - .  exp [-- t)] dt exp [-- (t - -  ~)] B (t) dt 
o 

U = C= exp (-- ~) + - ~  exp [-- It - -  ~11 t3 (t) at. 

0 

In the region behind the density jump,  the s y s t e m  of in tegrodif ferent ia l  equations (1), (2), and (3a) is solved by 
i tera t ion.  In the z e r o t h - o r d e r  approximat ion ,  it is a s sumed  that  t he re  is  no radia t ion.  The boundary conditions 
for heat  exchange p r o c e s s e s  and r e t a rda t ion  of pa r t i c l e s  a r e  the veloci ty  and t e m p e r a t u r e  of the pa r t i c l e s  
cor responding  to some value of the coordinate  of the solution of the s y s t e m  (1)-(3) in the region in front of the 
densi ty jump.  F i r s t ,  the s y s t e m  (1)-(2) is in tegra ted  together  with the equations d} = v~xdx and the z e r o t h -  
o rde r  approximat ion  for S and U, for  chosen boundary conditions for the v a r i a b l e s  Tp and Vp and with the con-  
dition } = 0 at x = 0 .  According to the functions Tp(x) and Vp(X), we calcula te  success ive ly  the in tegra ls  in the 
s y s t e m  (3a), the a r b i t r a r y  constant C 2 with the help of the conditions (4b), the solution in front  of the density 
jump,  and the value of the radia t ion  flux S(x) and density U(x) in the f i r s t  approximat ion .  Then, the cycle  de -  
sc r ibed  above is  r epea t ed  with the s a m e  boundary conditions, using now not the zero th  but the f i r s t ,  second, 
e tc .  o rder  approximat ions  for S and U to obtain S(0) and U(0) to given accu racy .  Then, the t e m p e r a t u r e  Tp(0) 
and par t i c le  veloci ty  vD(0 ) a re  de te rmined  f rom the solution obtained in the reg ion  in front  of the density jump 
according  to the correhponding values  of S(0) and U(0). Together  with the functions S(x) and U(x) obtained in 
the l a s t  i te ra t ion  in the preceding  cycle  they fo rm the initial  data for the new cycle .  The calculat ion is  t e r -  
minated  a f t e r  the requ i red  accuracy  is obtained for Tp and Vp. As a resu l t ,  the solution S(x), U(x), Tp(X), 
and Vp(X) is obtained for reg ions  behind and in f ront  of the densi ty jump,  sat isfying all conditions (4). 

The a lgor i thm for solving the s y s t e m  of equations (1), (2), and (3a) desc r ibed  above dif fers  somewhat  f rom 
a s im i l a r  a lgor i thm desc r ibed  in [3] and extends,  in compar i son  to [3], the region of convergence  of the i t e r -  
at ions to smal l  flux densi t ies .  Up to flux dens i t ies  at - ~  not lower  than 10 -2 k g / m  3, the convergence of the 
i t e ra t ions  is  good: an accuracy  of 0.1% is a t ta ined with not m o r e  than 10 i te ra t ions .  As the flux densi ty de-  
c r e a s e s  and the ro le  of radia t ion  cor respondingly  i n c r e a s e s ,  the convergence  of the p r o c e s s  indicated w o r sen s .  
When the s t ruc tu re  of the shock f ront  behind the densi ty jump is  de te rmined  mainly  by radia t ion t r a n s f e r ,  the 
i te ra t ion  p r o c e s s  no longer  converges .  
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i S 

Fig. 1. Qualitative behavior  of the solutions 
of the sys tem (1)-(3) in the SU plane (S = 0, 
U = U~ is the saddle point singularity; S(0), 
U(0) a re  the values of S and U on the density 
jump): 1) the solution for which the boundary 
coincides with the density jump; 2 and 3) are  
located, respec t ive ly ,  in front of and behind the 
jump. 

1 !td%! 1o2u ~ ' :~ f~ U I t ~ t I I 

i ' ' 77-  ,t i_ l 

-os -o 2 -o2 o o2 o,4 z -o,6 -o:, -o2 o o2 44 x 

Fig. 2. Profiles of the radiation flux S 
[J/m 2 �9 see], radiation density U [J/ 
m3], gas velocity v and particles 
velocity Vp [m/sec], gas temperature 
T, and particle temperature Tp [K]; 
x is in meters. 

The system of differential equations (1)-(3) can be integrated in the region behind the density jump with 
the help of another method, which is also effective for low gas densities. The gist of the method is as follows. 
In the solution of the system (1)-(3) obtained for the region in front of the density jump with the position of the 
jump remaining undetermined, some point is chosen with radiation density U~ = (U~ + U~))/2, where U~ is the 
maximum value of U up to which the integration was carried out; U~ is the value of U known to correspond to 
some point in front of the density jump sought (U~) = 4o'T~_~/c can be taken as this point). The quantity US and 
the corresponding value of the remaining variables of the solution obtained are used as boundary conditions in 
integrating the system (1)-(3) behind the density jump. The position of U~ relative to the density jump sought 
is determined by the behavior of the integral curves in the neighborhood of the singular point x = + ~. It is 
assumed that the singular point of the system of differential equations (1)-(3) in the SU plane is a saddle point. 
(The existence of a saddle point singularity for the system (3) with Tp = T is proved rigorously in [2].) The 
nature of the behavior of the solution of (1)-(3) sought, which must coincide with the separatrix as well as other 
integral curves in the vicinity of the saddle point singularity, is shown in Fig. 1. Curve 1 represents the case 
when the boundary coincides with the value of the variables on the density jump, while curves 2 and 3 corre- 
spond to the case when they are located, respectively, in front of and behind density jump. By comparing the 
solution obtained with curves 1-3, it is easy to determine the direction in which U~ must be displaced in order 
to approach the integral curve sought. Solving this problem by iteration, it is sufficient, e.g., to set U~ = 
(U~ - l +  U~-(')/2, where for curve 2 U ~ : U ~  -] ,  U ~ = U ~  -] ,  U~-I-- ~ U~-' ; for curve 3, U~=U~- ' ,  U ~ =  i-, u c  , and 

U~, -I  = U~-', where i is the number of the i terat ion.  It is easy  to see that the density jump is always located 
within the segment [Uk, UD], whose length f rom iterat ion to i teration dec reases  by a factor  of 2. The number 
of i terat ions for given accuracy  is de termined by the convergence of the p roces s  of halving the segments  and 
the initial length of 0 0 [U A, U D]. Calculat ions using this method showed that for gas densit ies of in teres t  for the 
given problem the values of the var iables  sought on the density jump and the entire s t ructure  of the shock front  
are  determined to within 1% within ~10 i terat ions.  The equil ibrium values at the point x = +~ are  achieved in 
this case by all var iables  with much higher accuracy .  The lat ter  c i rcumstance  served as a c r i te r ion  for the 
co r rec tnes s  of the calculation of the s t ruc ture  of the shock front and an indirect  proof of the fact that the point 
x = +r162 is a saddle point s ingulari ty of the sys tem of differential  equations (1)-(3) in the SU plane. 
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The p rocedure  desc r ibed  above can be r ea l i zed  when the mean f ree  path of  the radia t ion  exceeds  the 
cha r ac t e r i s t i c  length of the other nonequil ibr ium p r o c e s s e s  (which, as  a ru le ,  is  obse rved  in this problem) or 
when the gas density is low, while radia t ion  does not play a la rge  ro le .  Otherwise ,  the radia t ion at ta ins  a 
s tate  of local  t he rmodynamic  equi l ibr ium sooner  than the other re laxa t ion  p r o c e s s e s  a re  completed.  Then, 
for boundary conditions given i m p r e c i s e l y  on the density jump, the in tegra l  curves  of the radia t ion  flux and 
density will be above or below local  equi l ibr ium. In this case ,  in determining U i ,  the computat ional  p rocedure  
mus t  f i r s t  ensure  that  S and U attain local ly  equi l ibr ium values  and then equi l ibr ium values .  

Figure  2 shows an example  of the s t ruc tu re  of a shock front  in a mix tu re  of neon and soot pa r t i c l e s ,  c o r -  
responding to the following p a r a m e t e r s  of the problem:  p = 1 .34 .10  -3 kg/m3; pp = 1.34 -3 kg/m~; T = 273~ at 
x = -0% T = 3O00~ at  x = +oo; R = 5 .10  -7 In. In the calculat ions,  it was a s sumed  that ~x e = an = o~- = 0.9; 
0 = 1; C m = 7.68 �9 104 J / k g .  deg. As is evident f rom Fig. 2, radia t ion absorbed  in front of the densi ty jump 
heats  the par t i c les  and gas to a ve ry  high t e m p e r a t u r e  and changes the veloci ty  of  the pa r t i c l e s  and that  of 
the gas .  Due to the continuous i nc r ea s e  in Tp and p_ on the density jump, the pa r t i c les  ab so rb  m o r e  r a d i a -  

v 
tion than they emit ,  not only for x < 0, but also in some  neighborhood x _> 0. For  this r e a son ,  the point of m a x i -  
mum radia t ion flux does not coincide with the density jump.  The s t ruc ture  behind the density jump is d e t e r -  
mined by the in teract ion of all nonequi l ibr ium p r o c e s s e s .  Immedia te ly  behind the jump, the de termining  
p r o c e s s  is the p r o c e s s  of convers ion  of the kinetic energy  of pa r t i c l e s  into heat energy in the mix tu re .  This 
explains the inc rease  in the gas  t e m p e r a t u r e  behind the densi ty jump.  

N O T A T I O N  

A, Cp, and Cm, r e spec t ive ly ,  gas constant ,  the heat  capaci ty  of the gas  and of the pa r t i c l e  m a t e r i a l  
computed pe r  unit m a s s ;  B(x), source  function in the t r a n s f e r  equation; c, veloci ty  of light; Ct, and C2, a r b i t r a r y  
constants ;  F, fo rce  act ing on pa r t i c l e  in the gas flow; M, Mp, P, and E, constants that c h a r a c t e r i z e  the s ta te  
of the gas in front of the shock wave,  the intensi ty of the shock wave, the f ract ion of Par t i c les  and gas in the 
mixture;  np, number  of pa r t i c les  per  unit volume; p, gas p r e s s u r e ;  Q, amount of heat absorbed  per  unit t ime  
by a pa r t i c le  moving in the gas; r ,  modif ied stagnation coefficient;  R, par t ic le  radius;  S, in tegra l  radia t ion 
flux; St, Stanton number ;  t, in tegrat ion var iable ;  T and Tp, gas and par t ic le  t e m p e r a t u r e s ;  Tr ,  s tagnation t e m -  
pe ra tu re ;  U, in tegra l  radia t ion density;  v and Vp, gas and par t ic le  veloci t ies ;  V = Iv - vlol; x, distance m e a -  
sured  f rom the densi ty jump; z = V / ~ ;  OZe, an ,  and r accommodat ion  coefficients ,  cha rac t e r i z ing the  f r a c -  
tion of the energy and of the no rma l  and tangential  components  of the momentum t r ansmi t t ed  to the gas  a toms 
in coll is ions with a solid sur face ,  r e spec t ive ly ;  flU, fiT, and flv, constant  coeff icients  in the l inear ized  sy s t em 
(1)-(3); 7, r a t io  of specif ic  heat  capac i t i es  of the gas; ~/1, 72, 73, 74, and k, constants;  0, emiss iv i ty ;  ~4, coef-  
ficient of absorpt ion;  k+, posi t ive  root  of the cha r ac t e r i s t i c  equation; ~, d imensionless  independent va r iab le  
o f  the sy s t em (1)-(3); p, pp, and pm, gas  density,  pa r t i c l e  densi ty,  and density of the par t ic le  ma te r i a l ;  
a,  S t e f a n - B o l t z m a n n  constant.  The indices a re  as follows: A, D, and C, r e spec t ive ly ,  edge and m i d -  
po in t s  of a segment;  i ,  number  of the i terat ion;  -0% equi l ibr ium value of the va r i ab l e s  in front of the shock 
front; +r equi l ibr ium value of the va r i ab l e s  behind the shock front,  
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